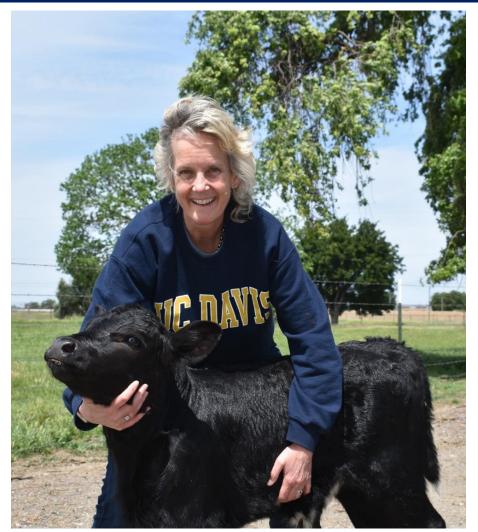


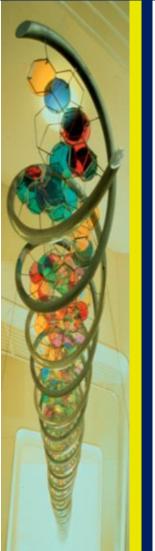
Global overview of animal biotechnology applications in the livestock industry

Alison Van Eenennaam


Professor of Cooperative Extension Animal Biotechnology and Genomics Department of Animal Science University of California, Davis, USA

Email: alvaneenennaam@ucdavis.edu

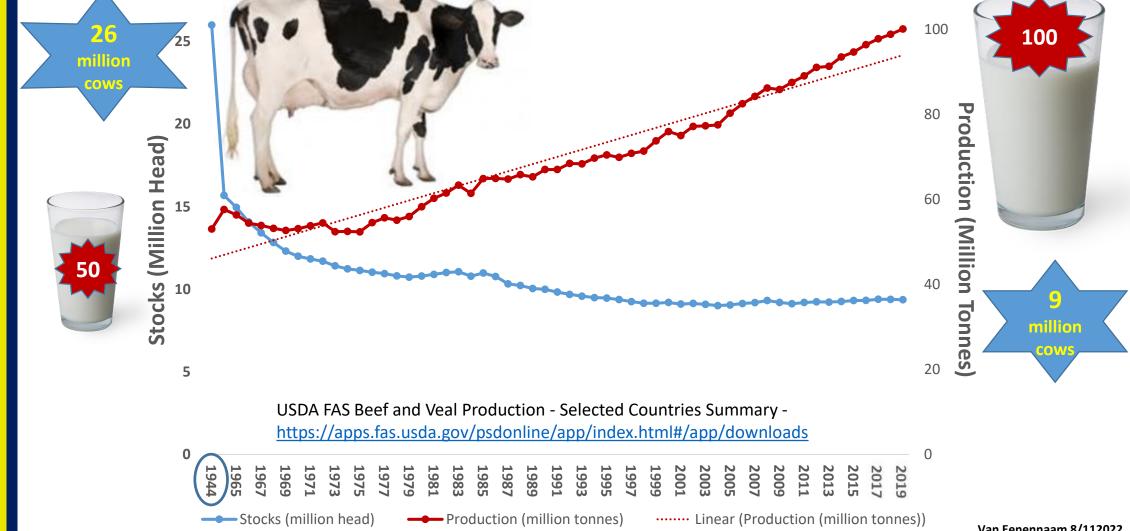
Twitter: **Walling @BioBeef**


BLOG: https://biobeef.faculty.ucdavis.edu WEBSITE: https://animalbiotech.ucdavis.edu

Van Eenennaam 1/31/2023

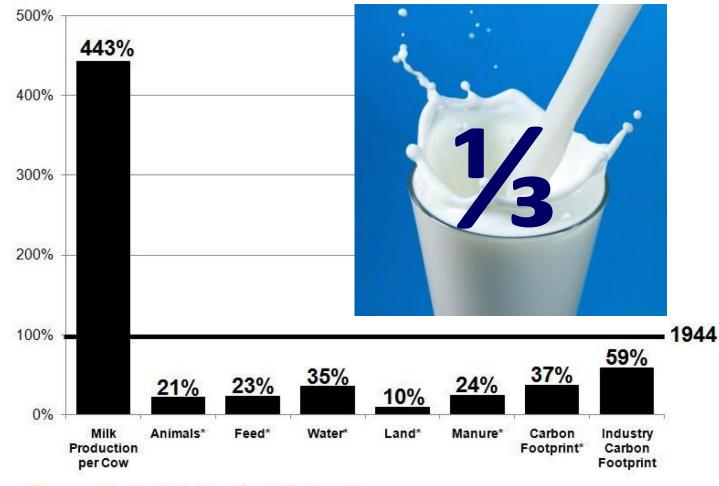
Breeders have selected for desired changes to our food and companion animal populations

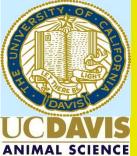
an Eenennaam 1/31/202



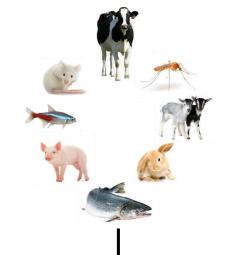
US Dairy Cattle Inventory 1944; 1964 – 2019

Stocks Down (Million head; blue, left) vs. Milk Production Up (Million Tonnes; red, right)




The GHG emissions associated with a glass of milk in the US today is ½ the 1944 value




* As measured per unit of milk as it leaves the farmgate

Capper, JL and DE Bauman, 2013. Annual Review of Animal Biosciences. 1 pp. 9.1–9.21

Modification of Animal Species

Technologies Used:
Selective Breeding
Artificial Insemination
Embryo Transfer
Ovum PickUp
Genomic Selection
Cloning
Genetic Engineering

Genome Editing

BREEDING TOOLS

GENOMICS

MODERN BIOTECHNOLOGY

Research

Billions of genetically engineered Mice/Laboratory Rodents/Zebrafish

Biomedical Products

Pigs –
Xenotransplantation;
Blastocyst
complementation of
organs

Pharma products

Rabbit Ruconest
Goat - ATryn,
spider silk;
Chickens Kanuma
Cows polyclonal
antibodies

Pets

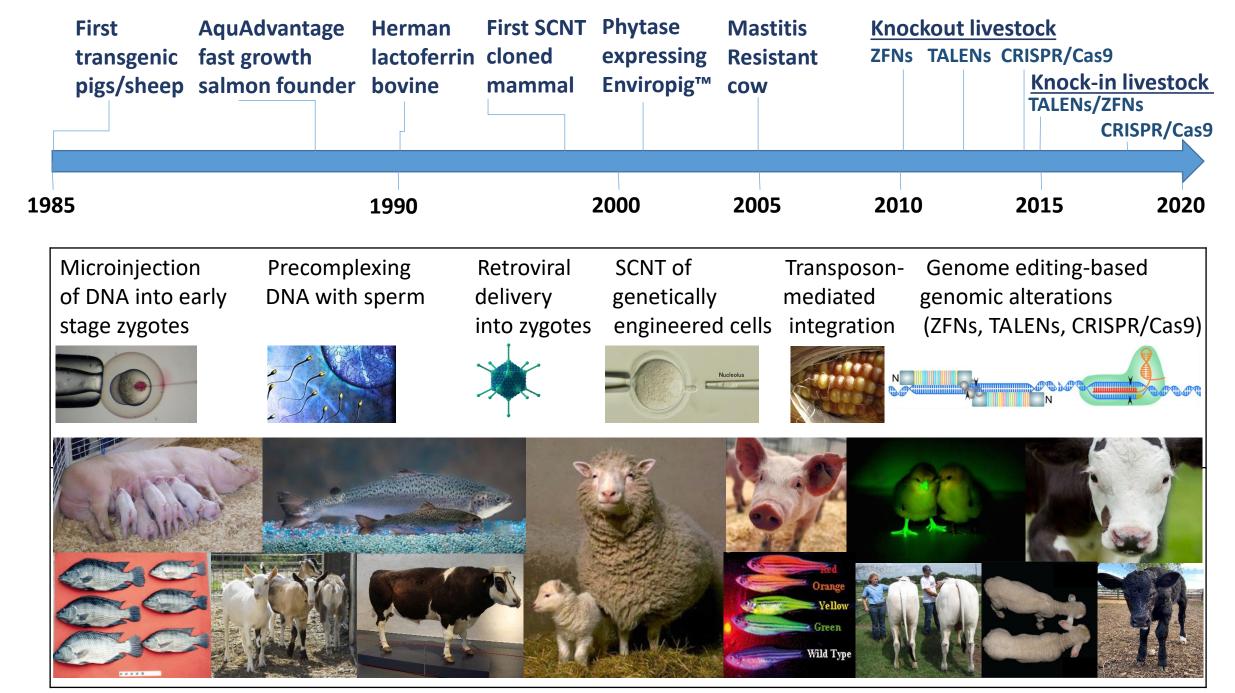
GloFish Micropigs

Pest Control

TseTse fly –
sleeping sickness
Mosquitoes –
zika/malaria
resistance
Moths –
agricultural pest
control

Agriculture/ Food products

AquAdvantage Salmon fast growth
Disease resistance
Improved product quality
Decrease environmental
footprint
Single sex offspring



Van Eenennaam AL. 2018 The contribution of transgenic and genome-edited animals to agricultural and industrial applications.


Rev Sci Tech 37(1):97-112. doi: 10.20506/rst.37.1.2743. PubMed PMID: 30209426.

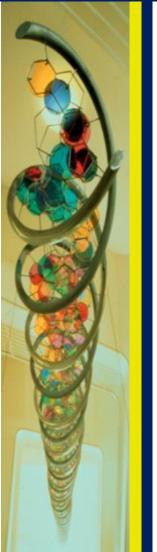
Van Ee

Van Eenennaam 1/31/2023

Van Eenennaam, A.L. et al. 2021. Genetic Engineering of Livestock: The Opportunity Cost of Regulatory Delay. Ann Review of Animal Biosciences.

Only 2 approved commercially-available Genetically Engineered (GE) food animals in the US

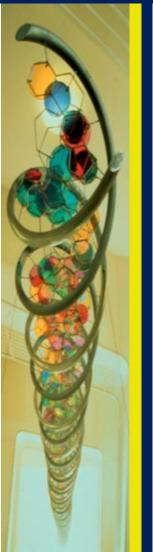
AquAdvantage salmon – first reported in the scientific literature in 2002

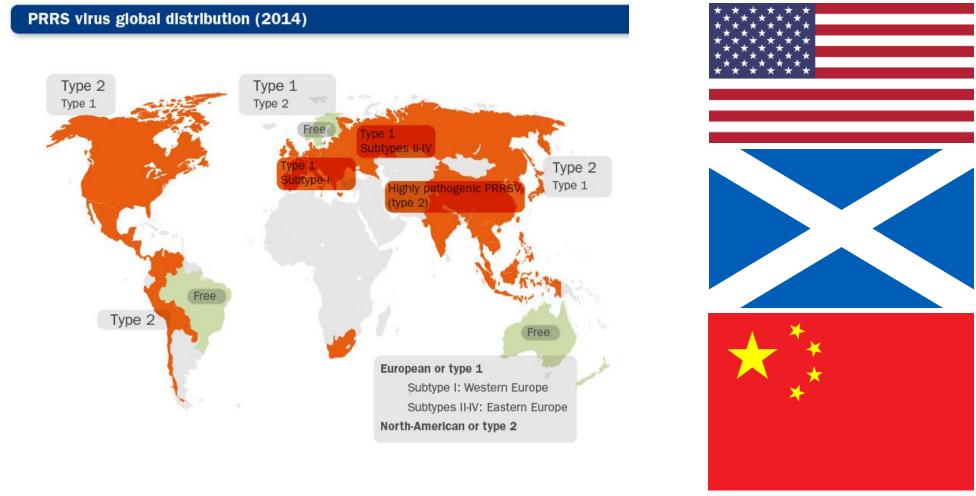

Galsafe pig – first reported in the scientific literature in 2002

Van Eenennaam, A. L., F. De Figueiredo Silva, J. F. Trott, & D. Zilberman. **2021. Genetic Engineering of Livestock: The Opportunity Cost of Regulatory Delay**. Annual Review of Animal Biosciences. 9:453-478

Gene editing involves introducing a double-strand break in the DNA at a targeted location in the genome https://youtu.be/bM31E_LRszc

What might we knock-out?


Genes associated with:

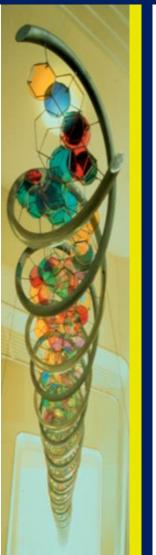

- Disease susceptibility (e.g. PRRS virus)
- Allergens (e.g. galactose-alpha-1,3-galactose)
- Unwanted development (e.g. boar taint)
- Thermo tolerance (e.g. SLICK)
- Increased yield (e.g. Myostatin)

UCDAVIS ANIMAL SCIENCE

Gene editing to produce Porcine Reproductive & Respiratory Syndrome (PRRS) virus resistant pigs

Whitworth et al. 2016. **Gene-edited pigs are protected from porcine reproductive and respiratory syndrome virus (PRRSV).** Nature Biotechnology 34:20-22.

Genetic improvement (permanent, cumulative) as a solution to animal disease rather than antibiotics/chemicals



Gene editing to remove the major milk allergen: beta-lactoglobulin protein

Wei, J., Wagner, S., Maclean, P. et al. 2018. Cattle with a precise, zygote-mediated deletion safely eliminate the major milk allergen beta-lactoglobulin. Sci Rep 8, 7661

OPEN Cattle with a precise, zygotemediated deletion safely eliminate

lactoglobulin Jingwei Wei¹, Stefan Wagner^{1,2}, Paul Maclean¹, Brigid Brophy¹, Sally Cole¹, Grant Smolenski^{1,3}, Dan F. Carlson⁴, Scott C. Fahrenkrug⁴, David N. Wells¹ & Götz Laible⁶

the major milk allergen beta-

We applied precise zygote-mediated genome editing to eliminate beta-lactoglobulin (BLG), a major allergen in cows' milk. To efficiently generate LGB knockout cows, biopsied embryos were screened to transfer only appropriately modified embryos. Transfer of 13 pre-selected embryos into surrogate cows resulted in the birth of three calves, one dying shortly after birth. Deep sequencing results confirmed conversion of the genotype from wild type to the edited nine bp deletion by more than 97% in the two male calves. The third calf, a healthy female, had in addition to the expected nine bp deletion (81%), alleles with an in frame 21 bp deletion (<17%) at the target site. While her milk was free of any mature BLG, we detected low levels of a BLG variant derived from the minor deletion allele. This confirmed that the nine by deletion genotype completely knocks out production of BLG. In addition, we showed that the LGB knockout animals are free of any TALEN-mediated off-target mutations or vector integration events using an unbiased whole genome analysis. Our study demonstrates the feasibility of generating precisely biallelically edited cattle by zygote-mediated editing for the safe production of hypoallergenic milk.

SCIENTIFIC REPORTS

Received: 22 January 2018 Accepted: 19 April 2018 Published online: 16 May 2018

Van Eenennaam 1/31/2023

Gene editing to knock-out a gene called KISSR: ANIMAL SCIENT which controls sexual development hormones

Castration is done because intact males are aggressive and the smell and the "boar taint" taste of pork caused by excessive testosterone is undesirable.

KISSR is a gene which controls sexual development hormones. Knock-out animals testicles will never enlarge and descend and they will never develop "that unmistakable ripe smell of an adult boar."

Flórez, J.M., et al., 2022. CRISPR/Cas9-editing of KISS1 to generate pigs with hypogonadotropic hypogonadism as a castration free trait. Frontiers in Genetics, 13.

UCDAVIS ANIMAL SCIENCE

Gene editing of prolactin receptor to produce *SLICK* cattle for warmer climates

The animal pictured on the left (a) carries the PRLR p.Leu462* mutation; the animal on the right (b) is wild-type

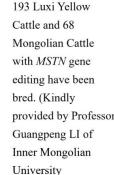
Image from Littlejohn, M., Henty, K., Tiplady, K. *et al.* 2014. Functionally reciprocal mutations of the prolactin signalling pathway define hairy and SLICK cattle. *Nat Commun* **5**, 5861. https://doi.org/10.1038/ncomms6861

Rodriguez-Villamil P. et al. 2021. **Generation of SLICK beef cattle by embryo microinjection: A** case report. Reprod Fertil Dev. 33(2):114. doi:10.1071/RDv33n2Ab13.

Gene editing myostatin to obtain double muscle cattle/sheep/pigs

MSTN gene edited for improving the meat production of Chinese local livestock breeds

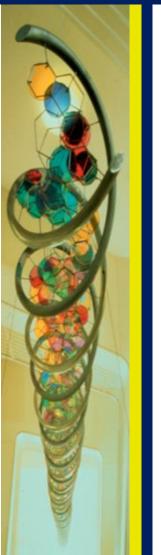
Jiaxing Black sow


(Records of livestock and poultry genetic resources in China. Records of pigs, 2011)

Qian et al, 2015

Jiaxian Red cattle (https://kepu.gmw.cn/agri/2021/04/27/content 3 4802673.htm)

MSTN gene editing F1 Luxi Yellow Cattle


Gene editing F1 Mongolian Cattle

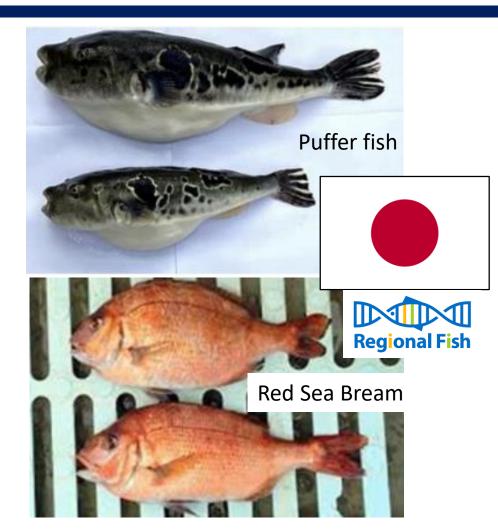
From a presentation "Agricultural applications in China to enhance sustainability" September 13, 2022 LI Kui, likui@caas.cn Agriculture Genomics at Shenzhen, Chinese Academy of Agricultural Sciences

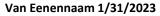
Naturally-occurring myostatin knockout ANIMAL SCIENCE in a cow at French cattle show, October 2022

Gene editing myostatin to obtain double muscle fish (Tilapia, Bream, Puffer)

Fish (Tilapia)

Nile tilapia with increased fillet yield


Product considered non-GMO in 2019



Brazil

Argentina

What might we knock-in?

Genes associated with

- Disease susceptibility (e.g. tuberculosis)
- Unwanted development (e.g. horns)
- Thermo tolerance (e.g. lighter coat color)
- Improved food quality/nutrition (e.g. high omega-3 pigs)

Gene editing to produce Tuberculosis resistant cattle

CIENCE TICKER GENETICS, ANIMALS, AGRICULTURE

CRISPR used in cows to help fight tuberculosis

BY HELEN THOMPSON 1:00PM, FEBRUARY 3, 2017

Kindly provided by Prof Yong ZHANG of Northwest A&F University

Northwest A&F University, Yangling, China

Wu et al. 2015. *SP110* knockin endows cattle with increased resistance to tuberculosis. Proceedings National Academy of Sciences. 112(13):E1530-E9.

Gao et al. 2017. Single Cas9 nickase induced generation of NRAMP1 knockin cattle with reduced off-target effects.

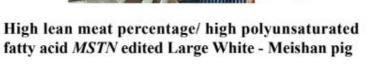
Genome Biol. Feb 1;18(1):13.

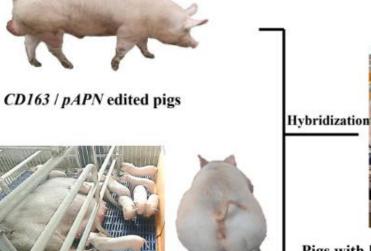
Van Eenennaam 1/31/2023

Gene editing to produce pigs with three alterations – Myostatin, PRRSV, TGEV

Ideal breed: 25% Chinese Meishan breed blood, good meat flavor and possibly good reproductive ability. Meat production is similar to world popular commercial breeds, fully anti PRRSV and TGEV.

Three gene edited pigs


High lean meat percentage / high polyunsaturated fatty acid MSTN edited big white pig



Hybridization

Pigs with high lean meat percentage / high polyunsaturated fatty acid / multiple resistance to major diseases

Meishan pig with high lean meat percentage / high polyunsaturated fatty acid (MSTN) gene editing

TGEV = Transmissible Gastroenteritis Virus

Around ~ 20* gene edited livestock are in the early stage of development and safety evaluation

0 at the stage of applied for safety certificate

3 at the stage of the production test

7 at environmental release

10 at pilot trials

*These numbers are not official numbers they are only estimates.

From a presentation entitled "Agricultural applications in China to enhance sustainability"

September 13, 2022

By LI Kui , likui@caas.cn

Agriculture Genomics at Shenzhen, Chinese

Academy of Agricultural Sciences.

Available at https://sites.google.com/a/vt.edu
/animalbiotechresources/2020-4th-intlworkshop

Van Eenennaam 1/31/2023

2018

GOPEN ACCESS

Citation: Xie Z, Pang D, Yuan H, Jiao H, Lu C, Wang K, et al. (2018) Genetically modified pigs are protected from classical swine fever virus. PLoS Pathog 14(12): e1007193. https://doi.org/10.1371.journal.poat.1007193

Editor: Shou-Wei Ding, University of California Riverside, UNITED STATES

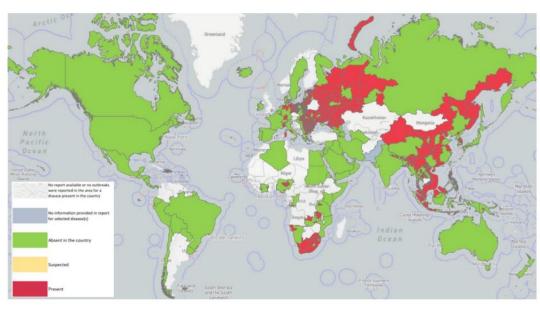
Received: June 27, 2018

Accepted: October 31, 2018

Published: December 13, 2018

Copyright: © 2018 Xie et al. This is an open access article distributed under the terms of the <u>Creative</u> <u>Commons Attribution License</u>, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and RESEARCH ARTICLE

Genetically modified pigs are protected from classical swine fever virus


Zicong Xie¹°, Daxin Pang¹°, Hongming Yuan¹, Huping Jiao¹, Chao Lu¹, Kankan Wang¹, Qiangbing Yang¹, Mengjing Li¹, Xue Chen¹, Tingting Yu¹, Xinrong Chen¹, Zhen Dai¹, Yani Peng¹, Xiaochun Tang¹, Zhanjun Li¹, Tiedong Wang¹, Huancheng Guo², Li Li¹, Changchun Tu², Liangxue Lai¹, Hongsheng Ouyang¹

- 1 Jilin Provincial Key Laboratory of Animal Embryo Engineering, Institute of Zoonosis, College of Animal Sciences, Jilin University, 130062, Changchun, Jilin Province, People's Republic of China, 2 Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin Province, People's Republic of China
- These authors contributed equally to this work.

Abstract

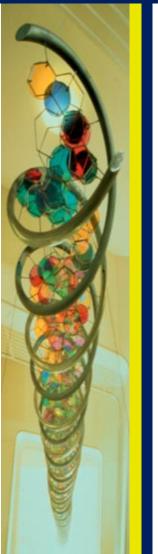
Classical swine fever (CSF) caused by classical swine fever virus (CSFV) is one of the most detrimental diseases, and leads to significant economic losses in the swine industry. Despite efforts by many government authorities to stamp out the disease from national pig populations, the disease remains widespread. Here, antiviral small hairpin RNAs (shRNAs) were selected and then inserted at the porcine Rosa26 (pRosa26) locus via a CRISPR/ Cas9-mediated knock-in strategy. Finally, anti-CSFV transgenic (TG) pigs were produced by somatic nuclear transfer (SCNT). Notably, in vitro and in vivo viral challenge assays further demonstrated that these TG pigs could effectively limit the replication of CSFV and reduce CSFV-associated clinical signs and mortality, and disease resistance could be stably transmitted to the F1-generation. Altogether, our work demonstrated that RNA interference (RNAi) technology combining CRISPR/Cas9 technology offered the possibility to produce TG animal with improved resistance to viral infection. The use of these TG pigs can reduce CSF-related economic losses and this antiviral strategy may be useful for future antiviral

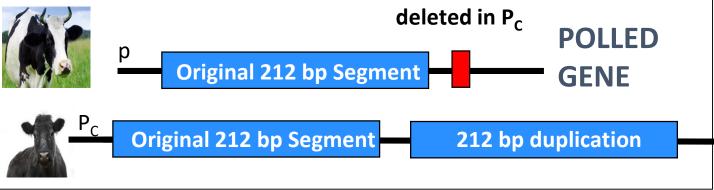
Globally since 2020, and as of 29 September 2022, African Swine Fever (ASF) has been reported in 45 countries including ROK

Van Eenennaam 1/31/2023

^{*} ouvh@ilu.edu.cn

Gene editing to obtain coat color variants better suited to warmer climates


Laible, G., Cole, SA., Brophy, B. et al. 2021. Holstein Friesian dairy cattle edited for diluted coat color as a potential adaptation to climate change. BMC Genomics 22, 856.


Gene Edited Polled Calves

Naturally-occurring bovine allele at polled locus

Production of hornless dairy cattle from genome-edited cell lines

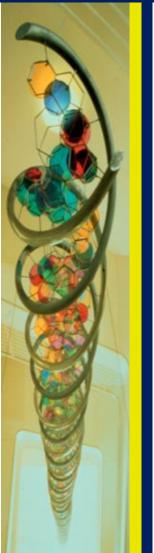
Daniel F Carlson¹, Cheryl A Lancto¹, Bin Zang², Eui-Soo Kim¹, Mark Walton¹, David Oldeschulte³, Christopher Seabury³, Tad S Sonstegard¹ & Scott C Fahrenkrug¹

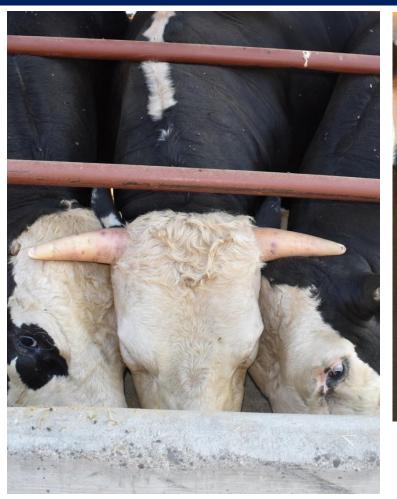
United States
Department of
Agriculture

National Institute of Food and Agriculture

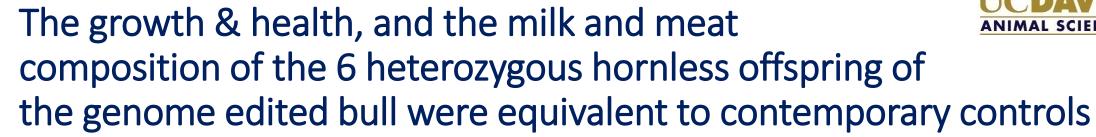
2015-67015-23316

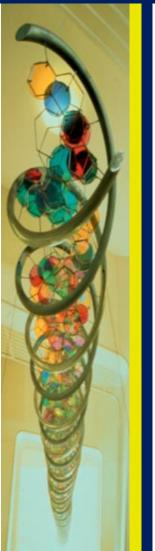
Carlson DF, Lancto CA, Zang B, Kim E-S, Walton M, et al. 2016.

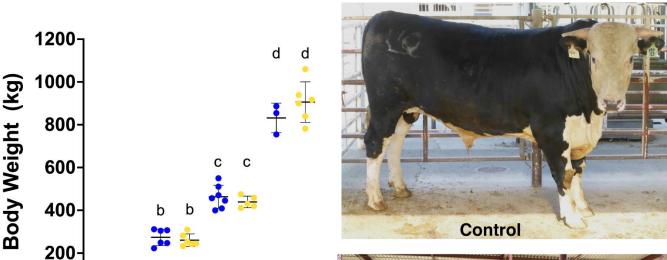

Production of hornless dairy cattle from genome-edited cell lines.


Nature Biotechnology 34: 479-81

We analyzed the 6 heterozygous hornless offspring of the genome edited bull and controls for several years


United States
Department of
Agriculture


National Institute of Food and Agriculture


Biotechnology Risk Assessment Grant #2017-33522-27097

Young, A.E. et al. 2020. **Genomic and phenotypic analyses of six offspring of a genome-edited hornless bull.** Nature Biotech 38, 225–232

United States
Department of
Agriculture

National Institute of Food and Agriculture

Biotechnology Risk Assessment Grant #2017-33522-27097

Trott, J. et al. 2022. **Animal health and food safety analyses of six offspring of a genome-edited hornless bull**. GEN Biotechnology. *1:2, 192-206*

Summary

- Genetic improvement of both plants and animals has been an important driver of agricultural sustainability.
- Biotechnology offers an approach to introduce useful genetic variation and alleles without the "linkage drag" typically associated with conventional cross-breeding.
- Traits that have been targeted include disease-resistance, heat tolerance, growth, and animal welfare traits that are difficult to address using conventional breeding.
- The fate of animal biotechnology will depend upon developing a harmonized, risk-based regulatory framework that permits international trade of products (milk, meat, eggs), gametes (i.e. sperm & oocytes), and embryos.

Acknowledgements

ANIMAL SCIENCE

- Dr. Josephine Trott
- Dr. Joey Owen
- Dr. James Murray
- Dr. Bret McNabb
- Dr. Elizabeth Maga
- Dr. C. Titus Brown
- Dr. Tamer A. Mansour
- Dr. Xiang (Crystal) Yang
- **Amy Young**
- Barbara Nitta
- Ross lab members

- Dr. John Cole, URUS Group LP
- Dr. Pablo Ross, ST genetics
- Dr. Tad Sonstegard, Acceligen
- Dr. Bo Harstine, Select Sires Inc.

SIRES

United States Department of **Agriculture**

National Institute of Food and Agriculture